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Light-cone lattices and the exact solution of chiral fermion and 
sigma models 

C DestritO and H J de  Vega$ 
K E R N ,  CH-1211, Geneba, Switzerland 
i Laboratoire de Physique Theoretique et Hautes Energies//, UniversitC Paris VI,  Paris, 
France 

Received 27 July 1988 

Abstract. A rich set of integrable two-dimensional quantum field theories are obtained 
from integrable lattice vertex models with q states per bound ( q  3 2) in the scaling limit 
by a generalisation of the light-cone lattice approach. Chiral fermion models with any 
simple Lie group of symmetry arise in this way (for finite q )  as well as bosonic models 
like the principal chiral model (for q = cc). The Hamiltonian, momentum and colour- 
conserved currents are constructed on the lattice and the bare equations of motion are 
derived. The renormalised mass spectrum is given explicitly for the set of models considered 
here. All these integrable vertex models yield conformal invariant theories i f  one takes the 
scaling limit in an appropriate different way. It is argued that the values one obtains for 
the central charges are the same as those provided by the Sugawara construction (in the 
continuum) for all simple Lie algebras. 

1. Introduction and summary 

The construction of exact solutions of 2~ integrable statistical models has made 
impressive progress in recent years [ l] .  Eigenvalues and eigenvectors of a rich set of 
theories have been constructed by means of the Bethe ansatz ( B A )  and its generalisations. 

Usually, the physics of a statistical model at criticality (infinite correlation length) 
can be described by a continuum quantum field theory. Therefore, integrable lattice 
models in their scaling limit seem to be very appropriate starting points of a programme 
for the building of exactly solvable quantum field theories (QFT). 

As a first step in this programme, the massive Thirring model ( M T M )  fields are 
constructed from an exactly solvable lattice theory, the six-vertex model, in [2]. The 
light-cone lattice approach used there is actually appropriate for systematically building 
various integrable fermionic and bosonic QFT from vertex models (figure l ) ,  taking 
the scaling limit in the precise way illustrated in the present paper. 

b = I ~b18J1up 

Figure 1. Statistical weight associpted with tne  deptc.ted configuration, l s a ,  p, a, b, s q .  

5 On leave from Dipartimento di Fisica, Universita di Parma, Parma, Italy. 
1 1  Laboratoire associe au CNRS, UA280. 

0305-4470/89/091329+25$02.50 Q 1989 1OP Publishing Ltd 1329 



1330 C Destri and H J de Vega 

Lattice vertex models are usually treated using the row-to-row transfer matrix (figure 
2). However, a simple relation exists between the light-cone (diagonal-to-diagonal) 
transfer matrices and the inhomogeneous row-to-row transfer matrices. By 
inhomogeneous we mean when the spectral argument 6 of the vertex weights depends 
on the column of the lattice as 

e+;(eo-e,,) l s n s N .  

Setting en = 8 ( - 0 )  for odd (even) columns leads to a light-cone transfer matrix when 
one sets eo = 8 or Bo = - 8, as is easily seen in figures 2-4. (An analytic proof is given 
in § 2.) More precisely 

T (  e ; { en = ( - ) " + ' e } )  = uL( e )  
T ( - e ;  { e ,  = ( - ) " + ' e } ) =  ~ ~ ( 6 ) '  

Here UL and UR respectively produce a right or left unit translation in the diagonal 
direction over the lattice. UR and UL are depicted in figure 4. 

The lattice Hamiltonian and  momentum are defined as 

H * P = (2 i / a )  log U R , L (  e )  (1.2) 

where a is the lattice spacing. All known integrable vertex models possess gapless 
regimes where one can define a scaling limit a + 0 such that a relativistic theory emerges. 
That is, we choose 0 = e ( a )  such that a (non-empty) set of massive states remains in 
the spectrum of H and P in the a -.+ 0 limit. We want to stress that several inequivalent 
QFT may be obtained from a single lattice model by choosing different functions 
8 = e ( a ) .  Specific examples are discussed in § 2 .  In  table 1 we summarise the mass 
spectrum pml  for the fundamental models symmetric under all the different simple 

Figure 2. The row-to-row transfer matrix, equation ( 2 . 1 ) .  

Figure 3. Graphical representation of the regularity condition equation ( 2 . 5 )  and the 
transfer matrix +(-8, 8). 

Figure 4. Diagonal-to-diagonal transfer matrices ( N  is even). 
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Table 1. 

Lie 
algebra Dynkin diagram K mk 

0-0-c-0-0 
1 2 3 4 5  

E6 

0 
I 

E,  0-0-0-0-0-0 

m, = m, = m,/2 = q'3/2; 
m2 = m4 = (3  + J 3 ) / 2 ;  
m 3 = ( 3 + d 3 ) / d 2  

n/9 
,-, 
i/ 

~ 1 1 5  f 

I 
E* 0-0-0-0-0-0-0 

F4 0 - O M - 0  T i 9  

G2 o+o ~ 1 6  t 

t These values can be (very laboriously) extracted from [4,6].  

Lie algebras. The mass unit p is related in the scaling limit to the lattice spacing a 
and the parameter 8 via 

= ( l / r a )  e x p ( - d )  (1.3) 
where a + 0 and 8 -$ such that p is fixed (the values of K are listed in table 1 ) .  In 
addition to the mass spectrum, the exact S matrix can be derived from the Bethe ansatz 
equations which determine the eigenstates of 7(On;  { e } )  (which are also eigenstates of 
UR and UL). 

All rational R matrices (i.e., matrices R ( 8 )  depending rationally on 8) lead to 
gapless vertex models (see equation (2.3) or  figure l ) ,  and  therefore a relativistic QFT 

can be constructed in the scaling limit (1.3). Rational R matrices invariant under any 
simple Lie group G are known [3,4]. For large values of the spectral parameter 8 
they behave as 

R ( 8 )  = P [ l + (  l / i e ) ( n +  A )  + 0 ( 1 / 8 * ) ]  (1.4) 
where A is a numerical constant, P is the exchange operator, Pab,cd = &d8bcr and 

dim G 

n = 2  T " @ T "  
a = l  

where the T" are the generators of G in the fundamental representation, normalised 
by Tr TOTP = IOSap,  I,> 0. It must be realised that (1.4) is just the semiclassical 
expansion for the R matrix. One can then introduce the lattice operator (see 5 2) 

n t h  site - 
T: = 0 0 .  . .@ T" 0. . .@ U. 
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As is shown in 0 2, TZ obey local equations of motion on the lattice: 

URT;n,_zUL= U,T,",U; 

= T;,, + (2i/ e) faPY T f n  - T:,, + O( 1 / e') ( 1 . 7 ~ )  

URT;,-l U;= ULTYn+, U: 

= T;,,-l - (2i/ o) fePy  T fn- ,  T:, + O( 1/ e'). (1.76) 

A closed form for the terms of O(l/@') is known for G= S U ( n )  (equation (2.24)). A 
bare scaling limit, B+a3  and then a + 0 ,  can be defined such that (1.6) yields the 
continuous zero-divergence and zero-curvature conditions on the vector current 

(1.8) 

Therefore we have a lattice version of the G algebra currents J Z ( x )  in the context of 
an integrable discretisation of field-theoretic models. 

Gapless lattice models exhibit conformal invariant behaviour for distances much 
larger than the lattice spacing a. Therefore, conformal field theories arise in the limit 

- 0. 
d e  
d a  
_-  a + O  (1.9) 

Notice that this scaling limit differs from (1.3). The finite-size corrections to the free 
energy and excitation energies yield the conformal properties of the model, that is the 
central charge c and the conformal dimensions A, B. The value of c is known exactly 
for all fundamental models associated with simply laced Lie algebras [5,6] and for 
the spin-S SU(2) symmetric model [7]. These results indicate the general formula for 
the central charge 

c = x dim G / ( x +  c),  (1.10) 

Here d i m G  is the dimension of the Lie algebra, h' its dual Coxeter numbert and x 
stands for the number of fundamental R matrices fused to produce the model. We 
have x = 1 for fundamental models and x = 2 s  for the spin-S SU(2) symmetric model. 
The Sugawara construction of the Virasoro algebra given in [8] also satisfies (1.10). 
We believe that the gapless integrable theories associated with a Lie algebra G provide, 
through their long-distance behaviour, an alternative construction of the conformal 
algebra. It is interesting to note that models like the six-vertex model, where c = 1, 
explicitly provide an infinite number of primary fields in the long-distance regime. 

Conformal field theories appear, therefore, in the limit (1.9) of lattice integrable 
models. These integrable models clearly have a much richer structure than the con- 
tinuum field theories since, for example, they yield massive QFT in the limit (1.3). 

In 0 3, we review the coordinate Bethe ansatz (CBA)  for a general class of two- 
dimensional chiral fermionic models (CFM) defined by the Lagrangian 

(1.11) 3 = iqd - a( &a yp $c Vab,cd ( J b ? * $ d  ) 

where $, is a Dirac field. The CBA solution shows that this model describes massless 
free particles bearing non-zero chirality plus massive excitations. Actually, the CBA 

t It is given by h'= CJIiaii, where C, is the quadratic Casimir operator in the adjoint representation and 
/la 11 the length of the longest root of the algebra. 
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only works when the interaction matrix V yields a two-body S matrix (3.12) obeying 
the YB equation (3.19). Then the massive sector of (1.11) coincides with the scaling 
limit (1.2), (1.3) of the lattice model built from this S matrix as vertex weights (equation 
(3.21)). Together with the lattice current construction (1.6)-( 1.8), this provides an  
explicit connection between the CBA approach in the continuum and the light-cone 
transfer matrix approach on the lattice. 

We also check in § 3 that the one-loop perturbative p function for the C F M  is 
correctly reproduced by the BA for all fundamental models associated with simple Lie 
algebras. This is a highly non-trivial check in view of the completely different mathe- 
matical structure of the continuum Feynman diagrams and  the lattice or CBA.  Actually, 
the CBA approach has serious drawbacks and  may sometimes lead to wrong results. 
This is illustrated in § 3 for the massless Thirring model and  in § 4 for the multiflavour 
generalisation of (1.1 I ) ,  i.e. 

9 = i&d+r - t g (  CL,?, Tu+,)(  IL,W’ Tu+r,) (1.12) 

where each +,( 1 s r s N f )  transforms under a n  irreducible representation p of the 
group G ,  and  Tu are the generators of G in that representation. In (1.12), we used 

Vab,cd = gnab,cd 

where II is given by (1.5). 
In § 4 we also briefly analyse the connection between the N,+co limit of the 

multiflavour chiral Gross-Neveu ( M C G N )  model and the SU( n )  principal chiral U 

model. For n = 2, the latter can also be (partially) obtained in the S + CO limit of the 
spin-S SU(2) light-cone vertex model. 

In  summary, we shall show in this paper how to generate integrable (massive) QFT 

and conformal QFT out of integrable vertex models by performing appropriate scaling 
limits. The scope of the light-cone lattice approach for integrable QFT seems to cover 
a very general set of models including all previously known examples. 

2. Light-cone versus row-to-row transfer matrices and field-theoretic models 

The row-to-row transfer matrix is one of the fundamental objects for an integrable 
vertex model. Let us consider an  inhomogeneous vertex model where both horizontal 
and vertical links take values in the same q-dimensional vector space (see figure 1). 
The row-to-row transfer matrix is 

It is graphically depicted in figure 2. O0 is the spectral parameter and  8, (1  s i s  N, 
with N an even number) are the inhomogeneity parameters. 

The vertex model is said to be integrable if the weights tab( 8 )  obey the Yang-Baxter 
( Y B )  algebra 

where 
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We choose here a regular solution of the Y B  equations (2.2) such that 

[tah(0)lap = ~ a p 8 h n .  (2.5) 

6 k  = (-1)k+'6 k = 1 , 2  , . . . ,  N. (2.6) 

Let us now make the following choice of inhomogeneities: 

In this case the sum over a,( 1 s j s q )  in (2.1) can be trivially performed, using (2.5), 
whenever Bo= or Bo= - 8 :  

.(e, e)a , f i=  7(e; { e k  =(- l )k+ 'e})ml  a\.p, p ,  

= ~ ~ u , p , ( ~ ~ l u ~ p Z ~ ' u , p ~ ( ~ ~ l u , p , ~ ~  . [ ' u , \ _ , p , ( ~ ) l a , p \ ~  (2.7) 

(2.8) 

But this is precisely a diagonal-to-diagonal, or light-cone, transfer matrix. In the 
notation of [2], 

Using (2.3), this becomes 

T( 8, O ) a , p  = RE$;( e)  . . . e). 

T ( e ,  e ) =  u+(e)v-= uL(e). (2.9) 

T(-e ,  e )  = T ( - e ;  {e, = ( - i )k+ ' e} )  (2.10) 

Similarly, if we consider 

we find 

T ( - e ,  e ) =  v + u + ( - e ) = [ u + ( e ) v ] ' =  uR(6)' (2.11) 

since R(O) '=  R ( - O ) =  R ( 6 ) - '  ( a  property which can always be achieved by proper 
normalisations). 

Therefore the light-cone transfer matrices UR,L( e)  are particular cases of an  
inhomogeneous row-to-row transfer matrix with alternating inhomogeneities given by 
(2.6). The commutativity property (2.4) yields therefore 

(2.12) 

where T ( O o ,  e) = T ( O 0 ;  {e ,  = (-l)""e}). One can consider the infinite sequence of 
commuting operators 

(2.13) 

They all commute with UL(e) and uR(e): 

[ c; > uL( e ) 1 = [ ( cc 9 u R (  e 1 = 0. (2.14) 

As explained in [2], the operators uR(e) and UL(e)  are precisely the light-cone 
evolution operators in a discretised Minkowski spacetime for the MTM. We shall 
generalise this interpretation to a large class of QFT. We define the Hamiltonian and 
momentum operators for the lattice QFT as 

H R , L  = f ( H  * P )  = ( i /a )  log UR,L( e)  (2.15) 
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where a is the lattice spacing. The continuum limit is obtained by letting 8 = e ( u )  in 
such a way that the physical mass gap is finite. Let us consider the spectra of U,(@) 
and U,( e )  in order to find e( a )  and the mass spectrum. 

Since UR and U ,  are expressed in terms of the row-to-row transfer matrix (equations 
(2.9) and (2.11)), it is enough to analyse the spectrum of T ( 0 , ;  {e,}) .  The eigenvectors 
and  eigenvalues can be exactly computed by the BA and its nested generalisations 
[1,9]. The ground-state eigenvector just corresponds (in the scaling limit) to the 
vacuum state of the QFT. The particle states follow from the lowest-lying excitations. 
Since there is a factor a- '  in the Hamiltonian (see equation (2.15)), only gapless vertex 
models may yield finite energy states in the scaling limit. Therefore, in order to calculate 
the energy and momentum in the scaling limit, it is enough to know the eigenvalues 
of T( eo; {e,}) close to the bottom of the spectrum. 

Let us take the family of fundamental vertex models associated with simple Lie 
algebras [3,4] (other models will be considered later on). The low-lying excitations 
in these models are associated with holes with large rapidity 4. Moreover, the large-4 
behaviour of the eigenvalues is independent of the inhomogeneity parameters 6, 
(1  S j  s N ) ;  its explicit form was derived in [6]: 

. h ( d  = - lim log[1im,,(0,; { ek } ) - '2 i1 (4 ,  eo; {e,})i 
N - x  

i m1 
- e x p [ ' F ~ (  4 + e,)] + O { e x p [ ~ 2 ~ ( 4  + e,)]}. 

d + o , p * x  7T 
= (2.16) 

Here ill( 4, 0,; { e&})  is the contribution of a hole in the lth branch (1 s 1 s rank G) to 
the B A  eigenvalue of T (  0,; { e k } ) .  The dimensionless parameters K and m, are given in 
table 1 for all these models associated with simple Lie algebras in their fundamental 
representations. 

Combining (2.16) with (2.9), (2.1 1 )  and  (2.15) yields the energy-momentum disper- 
sion relations (with 0 + cc and an  appropriate choice of the logarithm branch in (2.15)) 

exp( - K O )  

r a  
e l ( 4 ) =  ( ) m, cosh( rcd)+O[exp(-2~e) ]  ( 2 . 1 7 ~ )  

(2.17b) 

We then define the scaling limit according to 

a+O e+= p = exp( - K O ) /  ru fixed. (2.18) 

p is the renormalised, o r  physical, mass scale and the mass spectrum of these integrable 
Q F ~  is given by 

M1 = pm,.  (2.19) 
From the relativistic form of the dispersion law (2.17), we also recognise in ~4 the 
physical rapidity of the particles. 

This is a very general way of constructing integrable QFT. The operators H and P 
given by (2.15) are well defined on the lattice, as are all the higher conserved charges 
(2.13). In the continuum limit a + 0 ,  they provide the energy and  momentum of a 
relativistic invariant QFT, as long as the spectrum of the original vertex model is gapless. 
This is usually the case for statistical weights fa,,( 0 )  which are rational or  trigonometric 
functions of the spectral parameter 0. In addition to the particle spectrum, the S matrix 
is exactly calculable from the BA equation by standard methods [l]. 
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As was the case for the MTM, the evolution operators U R  and UL of the light-cone 
lattice are much simpler than the Hamiltonian and  momentum. This fact was exploited 
in [2] to obtain a lattice field equation for the bare fundamental fields of the MTM 

regularised on the lattice. An analogous local construction of lattice field operators 
would be very interesting to obtain in the general case. We present here a lattice 
construction for the currents of a large class of integrable models that will be specified 
below. Let us first give an  example of the construction in a particular model, in which 
the R matrix R (  e) (symmetric under the action of SU(n)  in the fundamental representa- 
tion, so that q = n in this case) is: 

R (  0 )  = ( 1  + ieP)/( 1 + io ) .  (2.20) 

Here Pab,& = 8ad&,C ( 1  s a, b, c, d s n )  can be written in terms of the SU( n )  Hermitian 
generators T" as 

(2.21) 

The T" are such that 

[ T", T p ]  = i fmPYTY Tr T"Tp = ; s a p  

where f m p Y  are totally antisymmetric SU( n )  structure constants. 

link of a unit horizontal slice of the diagonal lattice (see figure 5 )  
We define the SU(n) currents on the lattice by attaching a T" generator to each 

nth l ink  

T: = I O . .  .oT=o. .  . ~ n  l < n < N .  (2.22) 

We must apply UL, , ( e )  and UL,R(e)+ to T :  from the left and  right respectively, in 
order to derive the unit space and time evolutions of T :  on the lattice. These 
calculations reduce to the following local algebra (compare figures 4 and 5):  

R (  e) (  T" OU)R( e)' = 7 [ 0 2 ( 1 0  T u )  + T" OU + 2 i0 fmpY T P  0 T Y ]  

R(e)(UO T " ) R ( O ) + =  7 [ e 2 (  T" OU)+UO T" - 2i6f"PyTP 0 T Y ] .  

(2.23a) 
1 

i + e  

i + e  
1 

(2.23b) 

Therefore 

URTZan-2Ui= UiT;,,U; 

1 
-- - ( e 2 T ; , - , +  T ~ , - 2 i e f " P Y T ~ , - 1 T : , ) .  (2.246) 

i + e 2  

Figure 5. The lattice current 7; associated with the nth link. 
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These are the bare equations for the currents on the lattice. In  order to obtain the 
corresponding continuous equations, we must take a (bare) scaling limit. As was 
already the case for the MTM, bare and renormalised scaling limits are different. 

The bare scaling limit consists here of two steps. 
(i) Define T: = g e t :  and let f3 + 00 with the parameter g fixed ( g  will be the bare 

coupling constant). Equations (2.23) and (2.24) yield in this limit 

U R  t;,  -2  U ;  = 

u,~;,-,u;= U L r ; , , + l ~ I =  t; , , - ,  -2igfuPytf,-,t~,. 
( i i )  Let the lattice spacing a tend to zero. Then we can set 

U: = t; ,  + 2igfePY tf,, - tln 
(2.25) 

From (2.25) and (2.26), we find for a+O 

a,Jp" = a,J; -a, ~p = o 
a,J,"-a,J,"+igf"Py[J,P, JvY]=O 

(2.26) 

(2.27) 

where Jo = f ( J R  + J L )  and J, = $( JR - JL). Therefore the lattice operators T: provide an 
integrable discretisation of the zero-divergence and zero-curvature equations (2.27). 
These equations characterise the currents in the SU(n)  CGN model. In addition, H 
and P provided by (2.15), using the R matrix (2.20), are the discretised (integrable) 
versions of the CGN Hamiltonian and momentum in the zero-chirality sector (see § 3) .  

Let us now generalise the current construction for all rational R matrices admitting 
the large 8 (semiclassical) expansion [lo] 

(2.28) 
where A is a numerical constant, II = Z, ,KnPr ,  0 t p ,  with tu being the generators of 
the simple Lie algebra G in some representation p and K being proportional to the 
inverse of the Killing form. Solutions of the Y B  equations of this form exist for all 
representations p when G = A,, for some p, including the fundamental representation, 
for all the other simple Lie algebras. As in the SU( n) case, we define the lattice current 
operator by (2.22). Relations analogous to (2.23) and (2.24) hold in the general case 
(2.28), but the details of the terms of order 8-* depend on the specific Lie algebra G 
and representation p chosen. However, in the bare scaling limit, f3 +a, only the leading 
terms precisely provided by (2.28) survive. Therefore (2.25)-(2.27) hold in the general 
case where f o p r  now stand for the structure constants of G. We achieve in this way 
an integrable discretisation for the currents in the integrable models associated with 
a rational R matrix symmetric under G in the representation p .  For finite-dimensional 
p, this corresponds in the continuum to the zero-chirality sector of the chiral invariant 
model [ l l ]  

2 f =  $a+ -agK"p(~Y,t"~)($Y,'tp+) (2.29) 
where we can identify 

J," = &y,t"+ (2.30) 
although no lattice version of + is available at present (except for the MTM [2]). 
Moreover, it is shown in 0 3 (equations (3.18)-(3.23)) that the Hamiltonian and 
momentum derived from (2.29) by CBA coincide with the lattice operators (2.15) in 
the zero-chirality massive sector. It must be noted that (2.29) can be rewritten as in 
( 1 . 1 1 )  with V = g I I .  

R(f3)  = P( 1 + (l/ie)(n + A ) + 0 ( 1 / 0 2 ) )  
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For infinite-dimensional representations p the lattice models can be related to 
continuum bosonic models like the PC (+ model (see below). 

The spin-S (S > i) generalisation of the six-vertex model (with 2 s  + 1 states per 
link rather than just 2) provides a family of gapless vertex models associated with the 
Lie algebra G = AI [ 121. These models are characterised, besides the spectral parameter 
8, by an anisotropy parameter y ( 0  s y < ir), with y + 0 corresponding to the isotropic 
SU(2)-invariant limit. It is convenient to represent n / y  as a continued fraction 

ir 1 
Y 

P o = - =  bo+ 
1 

bl+ 1 
(2.31) 

b2+i 
b,+. . . 

where bo, b , ,  b 2 , .  . , are positive integers or zero. One also introduces the numbers 
pI, ql, y ,  and n, according to 

PI = 1 Pl+l =PI-l- b,-IP, b, _= [P,/Pr*ll is1 

41 = bo % + I  = 41 + bl i 3 0  
(2.32) 40=0 

y - ,  = 0 Y o =  1 Yl+ l  = Yl-I  + blYl i s 0  

"/ = Y,-I + ( j  - 4 , ) x  41 SJ  6 41+1 i s o .  

The analysis of [ 121 holds when there exist numbers r and (T such that qr s (+ S q r + l ,  
2 S +  1 = n,. Then one finds a family of low-energy excitations associated with each 
type of strong configuration (with string length n,) present in the ground state [12]. 
There exists in each family a kink state with mass 

(2.33) 

where the number ml does not depend on 0 and the index j ,  which labels the families, 
takes all even values from 0 up to r ( r  even) or r + 1 ( r  odd). In addition, one finds 
breather states with masses 

MI = ( m l / a )  exp( - ire/2p1-,) 

( k  - ql-l + 1) - (2.34) 

Therefore one can take the scaling limit in [ ( r +  1)/2]+1 different ways. That is, one 
can keep fixed any one of the kink masses (2.33), say M,,  as a+O and @-+CO (cf 
equation (2.18)). The families with mass scale smaller or larger than M, become, 
respectively, massless or infinitely heavy in the scaling limit. They decouple in both 
cases from the particles of the Ith family. The physical S matrix can be found in [ 121. 

The field-theoretic models discussed up to here correspond to finite values of q, 
namely a finite-dimensional vector space for each link in the light-cone lattice. This 
is clearly appropriate for fermionic fields. Since there exist representations of the YB 

algebra for q = 00, also bosonic QFT may be described in this framework. 
The S = 00 representation of the XXX magnet relates to the SU(2) principal chiral 

(+ model (PCM) ,  as was developed in [13]. Let us recall that the physical particle states 
of this model transform under the SU(2)L x SU(2)R group. The counting of states in 
the BA equation [13] and our derivation ( 0  4, see [14] for details) show that only the 
SU(2)L singlet sector of the model is described by the H and P associated through 
(2.15) to the infinite-S limit of the R matrix [15] 

(2.35) 



Chiral fermion and sigma models on the light-cone lattice 1339 

Here the operator J is defined by 

J ( J+  1) = 2 S ( S  + 1)  + 2 s ,  . s:! (2.36) 

where S ,  and S2 are spin-S operators ( S :  = SI  = S( S + 1)) acting on the horizontal and  
vertical spaces respectively. 

In other words, the Hamiltonian of the quantum PCM does nor follow from the 
vertex constructions (2.15) and (2.35), even in the scaling limit. Only at the classical 
level can an equivalence be established between the respective classical analogues [ 131. 
Although (2.15) and (2.36) d o  not provide at S=oc the full PCM Hamiltonian, they 
correctly reproduce its restriction to the SU(2) singlets, and  this is sufficent to calculate 
all particle masses as well as the invariant S-matrix amplitudes. The same consider- 
ations apply to the anisotropic SU(2) PC field [16], from which the O(3) non-linear (+ 

model can be obtained. 
The lattice current construction, (2.22)-(2.27), also applies to the PCM. For large 

8 the R matrix (2.36) admits a semiclassical expansion of the type (2.28). Therefore 
the whole construction holds. It must be noted that we have once again only one 
conserved and curvatureless matrix current: either the one associated with su (2 )R  or  
that associated with SU(2)L.  

I n  conclusion, the light-cone transfer matrices UR and U L  associated with each 
integrable gapless vertex model yield integrable and massive QFT in the continuum 
limit. Since the scaling limit can sometimes be performed in several inequivalent ways, 
one can construct different QFT from a unique given vertex model. 

Depending on q, the number of allowed states per link, one finds fermionic theories 
without internal degrees of freedom (q = 2, from the six-vertex model to the MTM), 

fermionic models with internal symmetries (q 2 2) and bosonic models (q = a). 

3. Coordinate Bethe ansatz (CBA) 

We derive in this section the C B A  for a general class of 2~ relativistic chiral-invariant 
fermionic models (CFM). A CBA also exists [ l ]  for an  important non-chiral case: the 
MTM. The MTM is special in a sense, since there exists a complete light-cone lattice 
regularisation based on the six-vertex model. The U( 1) invariance of this R matrix is 
identified with bare particle conservation and leads to a proper identification of the 
canonical lattice fields 4, and $;. In the general case, the symmetries of the R matrix 
are not obviously linked to a canonical field structure. This implies that the scaling 
limit of the light-cone vertex models in general describes only a sector (the zero-chirality 
sector, to be precise) of a continuum QFT which can be locally written in terms of bare 
canonical operators. The CBA exactly provides the means for the proper identification 
of such continuum QFT. 

Consider a CFM described by the Lagrangian 

where V is a constant Hermitian matrix acting in the internal q-dimensional spaces 
and determining the interaction between right movers (*+) and left movers (+-). We 
choose here as Dirac matrices 

0 -1 
y 5 =  y o y l  = ( 1  O )  

YO'(:, ;) Y l = ( l  o )  0 -1 
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so that ys+* = *+*. Equation (3.1) coincides with (1.11) upon using y " O y +  =U@ 
1 - y 5 @  y 5 .  For generic internal space and generic V, (3.1) essentially describes all 
relativistic chiral-invariant (and  left-right symmetric) fermionic QFT. A further gen- 
eralisation is possible by breaking the left-right symmetry using different left and right 
internal spaces. Such a model is considered in [17] in connection with the Wess- 
Zumino-Witten (wzw) CT model [18]. 

The Hamiltonian of the model (3.1) is 
L l 2  

H = 1 dx(-i$'y5dx+ + $a+$:- V a b , c d $ d - $ c + )  (3.2) 
- L I Z  

and commutes with the U( 1) x U( 1 )  charges of the theory 

Q = N + + N -  Q5= N + -  N-  
r LIZ 

(3.3) 

so that Q = Q5 = 0. While Q requires at least the VEV subtraction to be finite in the 
physical states, Q5 does not, since the necessarily unbroken chiral symmetry implies 
( N ,  - N - )  = 0 in the vacuum. 

The generators of the symmetries exhibited by V also commute with H. For 
example, V may be invariant under the action of a Lie group G in a given representation 
p. That is, under the change $ + p ( g ) $ ,  g E G, H will be invariant if 

For instance, the most general V invariant under SU( n )  in the fundamental representa- 
tion is ( q  = n here) 

Vah,cd = g a a d a b r  +(g'-g/n)aacabd 1 G a, b, c, d 6 n (3.5) 
where g and g' are arbitrary couplings. This interaction can be written as 

where 

JZ  and J ,  are, respectively, the 'colour' S U ( N )  current and the U ( l )  current. This 
model (alternatively called the chiral Gross-Neveu model or  SU( n )  Thirring model) 
was exactly diagonalised by the CBA in [19,20]. 

Let us now return to the general model (3.2). The CBA approach to the diagonalisa- 
tion of H consists of three steps. 

( i )  The canonical anticommutation rules on the fields $ and $' are given a Fock 
representation based on the unphysical reference state (0) killed by all $: 

$a = ( x )  10) = 0 Va, ,  . 
( i i )  The second-quantised Hamiltonian H is reduced to a differential operator h 

acting on states with a fixed number of pseudoparticles N+ and N -  which are both 
conserved. More explicitly, one sets 

 IF)=^ d ~ x  1 F a ,  a,(XI. . .XV) n $a,ct,(x,)lo) (3.8) 
L I Z  N 

-LIZ 0 1  a\ 1 - 1  
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where a, = *( 1 s j s N = N ,  + N - )  define any chirality configuration with prescribed 
N ,  and N - .  Then 

HIF)=IhF) (3.9) 

with 
N a 

h = - i  c a j - + c  $(l-ajcyl)S(xj-xl)V,l 
] = I  ax, ] < I  

(3.10) 

where V,, stands for the operator acting as V on the tensor product of the j th  and lth 
internal subspaces. It is useful to introduce here the following notation: for any set 
of quantities q = ( 9 , ,  . . . , q N )  associated with the N pseudoparticles, let q+ = 
( 9 J , ,  . . . , qJ,+), 1 s j, < j, < . . . < jN+ s N, a,, = +, be the restriction of q to the right- 
moving pseudoparticles; similarly, one defines q- , which is clearly complementary to 
4,. The Hilbert space at fixed N , ,  N- is formed by the square-integrable wavefunctions 
Fa, a , ( ~ l  . . . x N )  which are separately totally antisymmetric in the two sets of index 
pairs ( x u ) ,  and ( x u ) - .  

(iii) h is diagonalised on CBA states Ik, @), whose wavefunctions are given by 

In this expression, [. . .] N _ N -  means complete antisymmetrisation with respect to x+ 
and x- separately; k = (k,  , . . . , kN ) = k ,  U k-  is an arbitrary set of pseudomomenta 
(with k ,  and k-  separately given by all distinct entries); @ = ( @ a , ,  ,,,) is any global 
internal state; the sum ZOES, runs over all permutations of N objects, which form the 
symmetric group SN ; 6 ( x O )  = 6 ( x Q ,  <. . . < x Q , )  is 1 if the argument is true and 0 
otherwise; and, finally, the Q-dependent unitary S matrix S( Q) is obtained by taking 
the product, along any path of neighbouring transpositions connecting Q to the identity, 
of the unitary two-body S matrices: 

CY, = CY/ ( 3 . 1 2 ~ )  

(3.12b) 

where P,, is the exchange operator between the j th  and Ith internal subspaces. S ( Q )  
does not depend on the particular path chosen to reach Q, thanks to the (discrete) 
factorisability conditions satisfied by SJ, : 

S,S, = 1 ( 3 . 1 3 ~ )  

S, lSkn = S k n S , l  j ,  1, k, n all distinct (3 .13b)  

S,kS,/Sk/ = SklS,/sjk. (3.13 c )  

The eigenvalues of the Hamiltonian H and momentum operator P on lk, @) are the 
same as those of pure plane waves: 

( 3 . 1 4 ~ )  

(3.14b) 
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It is also easy to check that the CBA state lk, @) has the correct symmetry properties, 
since ( 3 . 1 2 ~ )  implies 

S(Qi-0-0)  = Q+Q-S(Q)  

where Q= acts only on a,, respectively. 
While the form of S,, for a, = a, is fixed by the requirement that the CBA states 

have the right discontinuities to cancel the 6 functions in h (equation (3.10); we have 
assumed the convention S(x)O(x) =$(x)) ,  the form of S,, for a, = a ,  is dictated by 
factorisability alone. In a sense, it contradicts the naive expectation that non-interacting 
equal-chirality pseudoparticles should have a unit S matrix. Actually, any discontinuity 
in x, -x, for a, = a, is possible, since the kinetic operator in (3.10) is completely blind 
with respect to them. 

Several comments are in order before we proceed any further. Step ( i )  might appear 
as a sacrilege to a relativistic field theorist. The state 10) certainly does not belong to 
the physical Hilbert space based on the true vacuum state. However, as soon as the 
original theory (3.2) is given an explicit uv cutoff A (which at any rate is always 
implicit when writing down bare Lagrangians or  Hamiltonians), then the state IO) and 
the true ground state (the physical vacuum at fixed A and L )  live in the same cutoff 
Hilbert space. When A + CO they separate in a A-dependent way and  act as reference 
states of two orthogonal Fock spaces supporting inequivalent representations of the 
canonical anticommutation rules. The real problem is how to introduce the uv cutoff 
A without spoiling integrability, which at this stage coincides with the possibility of 
exactly diagonalising h, the ‘first-quantised’ operator emerging at  step (ii). Indeed, 
the presence of a uv regularisation must change h by, for example, smearing the 6 
functions in (3.10), introducing higher derivatives, o r  replacing them by finite 
differences, and so on. The crucial point is that step ( i i i )  requires h to have precisely 
the singular form (3.10). The presence of 6 functions in h implies the presence of 
discontinuities in the CBA wavefunctions (3.11). In turn this means that the CBA states 
have support extending to infinite momentum in Fourier space. They are not physically 
cut off. The conventional uv regularisation in the CBA approach is only superficially 
a true regularisation. It consists of putting a sharp cutoff on the pseudomomenta 
k , ,  . . . , k, in order to make the energy eigenvalues ( 3 . 1 4 ~ )  bounded from below. 
Clearly, however, this does not correspond to a regularisation of the fields $(x) and 
$+( x) themselves, which still anticommute in a singular way. This very unconventional 
cutoff procedure can be a source of deep trouble, as we shall see shortly. 

For the moment, let us make another observation on step (iii). Its validity does 
not put any constraint whatsoever on the interacting matrix V.  This is because only 
discrete factorisability is required on the two-body S matrices (3.131, and this is 
guaranteed by the choice ( 3 . 1 2 ~ )  alone, independent of the particular form of V.  
Continuous factorisability is required only at a second stage, when the allowed values 
of the pseudomomenta are explicitly necessary. Let us now turn to this second stage. 

This consists of the imposition of periodic boundary conditions on the CBA states. 
Thanks to the factorisability relations (3.14), this imposition determines the following, 
finite-dimensional, eigenvalue equations for the state @ of (3.1 1 ) :  

q@ = exp( - ikJL)@ J = 1,2,  . . . , N (3.15) 

where 
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The system (3.15) is consistent since [q, Z , ]  = 0, again thanks to (3.13). Actually, one 
easily verifies that there are only two distinct Z, since 

(3.17) z, = z,, = z, . 
From (3.14) and (3.15), we now obtain 

27T 1 H = - 1 a,n, +- ( N ,  log Z ,  - N -  log Z-) 

P = -  2 n , + - ( N , l o g Z + + N _ l o g Z _ )  (3.186) 

( 3 . 1 8 ~ )  
L , = 1  L 

L , = I  L 
2lr i 

where the branches of the logarithms are fixed, so that the integers n, (n, f n, for 
a, = c y I )  are free BA eigenvector parameters. Since Z ,  also satisfy the identity Zy+Z_"- = 
1, we see that the momentum is properly quantised in multiples of 27r/L. 

Even before an explicit solution of the eigenvalue problem (3.15) is available, we 
see that the CBA has split the energy-momentum eigenvalues into two distinct and 
independent contributions. The first, given by integers n,, is exactly the same as a 
system of free fermions without any internal degree of freedom. The second contribu- 
tion depends only on the internal state @. This is a general feature of the CBA in 
relativistic models. 

Up to this point, no restriction on the interaction matrix V has been imposed. The 
possibility of completely integrating the discrete eigenvalue problem (3.15) imposes 
some restrictions now. In particular, we demand that the two-body matrices S,] satisfy 
a much stronger version of (3.13), which is continuous factorisability. This means that 
S, should be the value at 6 = ;(a,  - a,) of some unitary matrix SI,( e ) ,  with 0 an arbitrary 
complex parameter, satisfying the Y B  algebra 

(3.19) 

Ofcourse,for e=;(a,--k)and 8 '= t (ak  -al),(3.19)implies(3.13c). Equation(3.13a) 
is now replaced by S,k(6J)S,k(-e*) = 1 ,  i.e. S,k(t?)L=S,,(-8*), while (3.136) needs no 
generalisation since it is true for any two-body matrix. Notice that (3.12a), SI, = Pv 
for a, = a,, implies that S,,(e) must be a regular solution of the YB algebra: 

SI,(())  = pa,. (3.20) 

With the request that V be such that an integrable S,,( e )  can be found, the problem 
(3.15) is solved along the usual lines of the quantum inverse scattering method (QISM)  

[l]. The matrix S,,(e) is identified with the local weights t a b ( e )  of § 2 

S,, ( e ) s,, ( e + 8 ' ) Sk/( e ' = Ski( e '1 s,/ ( e + e '1 s, k ( e 1. 

(3.21) 

so that the formulation (3.19) of the Y B A  is mapped into the formulation (2.2) (with 
R = SP, P = exchange operator). One then extends the rapidities a, to arbitrary complex 
values 0, (the inhomogeneities of § 2) and explicitly verifies that 

z , = ~ ( e ~ = * i ; { e , = ( - i ) ~ + ~ } )  (3.22) 
where t ( & ;  {e,}) is the transfer matrix of (2.1). We see that, by choosing N ,  = N- 
and appropriately scaling the spectral parameter O, one can map Z, into the light-cone 
transfer matrices UR and UL: 

z+= UR z-= U; .  (3.23) 
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This relation can also be derived directly from the definition (3.16) of Z ,  and that of 
UR,L of [2] (see figure 4),  and holds in any case, even if continuous factorisability 
(3.19) cannot be established. Indeed, it is sufficient to make a precise choice for the 
arbitrary chirality configuration c y I ,  . . . , c y N ,  i.e. aZJ-, = -a2] = +, j = 1 ,  . . . , N+ (recall 
N ,  = N - ) ,  and exploit the regularity condition 

Thanks to (3.23) we can identify the energy-momentum operators defined on the 
light-cone lattice by (2.15) with the chiralless sector (i.e., the n,-independent sector) 
of the energy-momentum of the general chiral fermionic model (3.1). Comparing 
(3.18) (in the case N ,  = N-) ,  (2.15) and (3.23), we need only set L= N,u, where U is 
the lattice spacing. Of course, from the point of view of the continuum field theory 
(3.1), this identification is not quite obvious. It becomes natural only after a cutoff A 
is imposed on the integers nJ by, say, 

= P,, when a, = a,. 

( 2 r / L ) a J n ,  3 -A.  (3.24) 

Then one should minimise H for fixed A, determining the cutoff ground state IO),,. 
In the integrable cases when this can be explicitly performed, one finds that, in the 
ground state, N ,  = N- = No - A L  and therefore .2 - U - ’  indeed plays the role of a uv 
cutoff. 

In conclusion, from the point of view of complete integrable models, we see that, 
given a solution of the YB relations (2.2) or  (3.19) satisfying the regularity condition, 
one can either construct a light-cone vertex system characterised by the diagonal-to- 
diagonal transfer matrices UR and UL or  a fermionic QFT of type (3.1) having a n  
interaction matrix V related to the solution S,,(O) of the YBA by (3.126). In both 
cases, the BA equations governing the eigenvalue-eigenvector structure of U R , L  or  2, 
are identical. Of course, the QFT model has the extra freedom of independently varying 
N+ and N- away from their ground state value No. This, however, does not affect in 
any way the mass spectrum or  the S matrix. 

Actually, there is another, more serious, difference between the two above- 
mentioned procedures. While the light-cone lattice approach is a perfectly well defined 
means of constructing relativistic, non-trivial 2~ QFT in the scaling limit?, the fermionic 
approach suffers from the cutoff subtleties previously mentioned. In other words, it 
is not obvious that the CBA solution of the theory (3.1), even in the full integrable case 
characterised by (3.19), is the correct one, lying in the same universality class, at infinite 
uv cutoff, of conventional perturbation theory and other more traditional field-theoretic 
methods. From a purely technical point of view, let us observe that the CBA state 
completeness, in the field-theoretic sense, is very difficult to ascertain (in contrast, 
completeness of BA states for fixed N ,  is well understood, just as in spin systems [l]). 
This is because the cutoff procedure (3.24) breaks completeness in each fixed (N, ,  N- )  
sector, and when A is removed to 00, also N,, N-  tend to CD in any physical state. 
From another point of view, let us observe that the chiral currents 

JR,L(x)  J * ( x )  = (3.25) 

are replaced by multiplication operators 

(3.26) 

t Strictly speaking, there is also here a price to be paid: up to now, a canonical lattice field structure has 
not been generally available. 
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in the CBA Fock representation (3.6) based on the unphysical vacuum IO). Hence the 
commutators [ J = ( x ) ,  J,(y)] vanish identically for any N ,  and will never give rise to 
a Schwinger term, even when ,\+E. However, physical chiral currents, as is well 
known, must have anomalous commutators, by Schwinger’s theorem [21]. The only 
way out is that the canonical J ,  of (3.25) are not the physical U ( l ) x U ( l )  currents; 
not just because they are not VEV subtracted ( a  c-number subtraction will not change 
the commutator), but because the fields $+ and 4 are evaluated at the same point 
before the uv cutoff is sent to W. In a theory like the CGN of (3.6), where the interaction 
is dominated by the SU( n )  current-current coupling (we recall that the trajectory g‘ = 0 
is stable under renormalisation up  to the second loop), this problem with the U(  1)  x U( 1) 
currents is harmless. Indeed, the S U ( n )  currents are obviously not mapped into 
multiplication operators by the CBA (although their commutator is still free of central 
terms), and to get the described Schwinger terms in the commutator of physical 
U ( l )  x U( 1) currents, it is presumably sufficient to split $‘(x)$(x) + $+(x+ E ) $ ( x )  
and take E + 0 only after the uv cutoff A is sent to CC in the CBA construction. 

Quite different is the situation in the massless Thirring model (the g = 0 case of 
(3.6)). Here the CBA is bound to fail. By mapping the U ( l ) x U ( l )  currents (which 
alone enter the interaction) into diagonal operators (equation (3.26)), the CBA implies 
a complete decoupling of physical excitations. As the exact solution shows, both in 
operator [22] and  functional language [23], this decoupling is actually prevented only 
by the axial anomaly, which is just a consequence of Schwinger terms (the crucial role 
of Schwinger terms could already be seen in the old fashioned non-covariant perturba- 
tion theory). For a correct BA lattice construction of the massless Thirring model see, 
e.g., [24]. 

In the case of chiral fermionic models with any non-Abelian simple symmetry 
group in the fundamental representation, it is possible to perform a non-trivial check 
that the CBA solution should indeed lie in the same universality class of standard 
perturbative approaches. For all these models, the S matrices S,,( 8 )  satisfying the YB 

equations (3.19) are known [3,4]. They all enjoy the semiclassical expansion (1.4) for 
large 8 (recall that the S and R matrices are connected by the exchange operator 
P :  S = P R ) .  Thus 

(3.27) 

Due to (3.12b), the large-8 form of the interaction matrix V is 

and, with the natural identification 8 = l / g  (compare this relation with the ‘bare’ 
scaling limit of § 21, the Lagrangian (3.1) becomes 

(3.28) 

i.e, the typical G-invariant current-current interacting theory, up  to O ( g 2 )  (for special 
cases, like G = S U ( n ) ,  it is possible to obtain the form (3.28) without higher-order 
corrections, by choosing 8 = 8 ( g )  = l / g +  cuo/g2+. . . and an  overall phase factor for 
S,,(8), see § 4).  

We can now study the model (3.28) in conventional perturbation theory, up to first 
loop. The O(g’) terms are then irrelevant as far as divergences are concerned. Calcula- 
tions are simplified by introducing auxiliary, non-propagating fields A:, to split each 
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Figure 6 .  The two logarithmically divergent ladder diagrams. The wavy lines represent 
the contraction of two auxiliary fields A", 

four-fermion vertex into two AEJ,'" vertices. Due to the two-dimensional property 
y,yvy@ = 0, one can easily realise that only the two ladder diagrams of' figure 6 are 
logarithmically divergent. The coefficient of this divergence is given by 

(3.29) 

where C2 is the quadratic Casimir operator of the adjoint representation. Notice that 
the Abelian J,J" coupling cannot contribute to this divergence exactly because of its 
Abelian nature. 

The result (3.29) demonstrates the asymptotic freedom of the model and provides 
the value -( C2/27)  for the first coefficient of the /3 function. On the other hand, this 
same coefficient can be calculated from the scaling form of the dynamically generated 
mass in the BA construction, (2.18). It  equals K - ' .  A look at table 1 then confirms 
that K = 2 7 /  C2 for all simple Lie algebras (we have chosen the overall normalisation 
of the Lie algebra such that the shortest root has unit length). The very different origin 
of the same numbers K provides a rather non-trivial check of the validity of the BA 

for the CFM in the fundamental representations. 

4. The CBA for multiflavour models and the principal chiral u model 

In the preceding section we reviewed the CBA, discussed its main shortcomings, and  
presented an  Abelian example in which it fails (the MTM), as well as a large class of 
non-Abelian current-current models (equation (3.28): the generalisation to any simple 
Lie group of the S U ( n )  CGN model), in which it is successful. Indeed, the CBA for 
this class of models passes other checks besides the one-loop universality check 
examined here; for instance, it agrees with the 1/ N expansion and with semiclassical 
methods. 

In  this section, we shall present another very important example, in which the CBA 

of 0 3 fails. This is the multiflavour generalisation of model (3.28), when the 'colour' 
currents of the Lie group G are 

r =  1 

This class of models is important also because of its connection with the PC U model 
on the group G [25,26]. To be specific, we shall consider only the simplest case 
G = SU( n ) ,  i.e. the multiflavour chiral Gross-Neveu (MCGN)  model. In this case, the 
internal space has total dimensionality q = nN,.  

First let us see how the CBA works for the MCGN. The flavour acts solely as a 
spectator of the colour interaction (though its presence has non-trivial consequences 
through the Pauli exclusion principle); hence the colour two-body S matrices are 
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unchanged. In the continuous form satisfying (3.19) they are, for g’=O (compare with 
(3.20) 1, 

where 

and the discrete S,  of ( 3 . 1 2 ~ )  and (3 .12b)  are recovered when 

6 + ( 1 / 2 i ) ( q  - (U/). (4.3) 

To take flavour into account in an integrable way there are two possibilities. The 
most natural possibility consists of taking a unit S matrix in flavour space; it will be 
analysed first. In  this case, the CBA wavefunctions (equation ( 3 . 1 1 ) )  are modified into 

(xurl k, a, 9) = 9, n exp(ik, x,) ] e(XQ)[S(O)@]a (4.4) [ j:l N + N _  Q E S \  

where 9 = (qr1, , r b )  is the flavour state. [. . .] N + N _  now denotes complete antisymmetri- 
sation in the pair sets (xr)+ and (xr)- .  Hence the pseudomomenta k+ and k-  must 
obey an  exclusion principle of order N,, i.e. the same entry can appear in k ,  at most 
Nf times. Although colour and  flavour are decoupled in the CBA states (3.30), the 
global internal state being just a direct product @a,r=@a9r, it should be clear that 
one can always find a complete basis in each (N, ,  N - )  sector of the decoupled form 
(3.30). As we previously observed, however, ‘first-quantisation’ completeness in each 
( N + ,  N - )  sector is not enough; one needs a (much more difficult even to define) 
field-theoretic, i.e. ‘second-quantisation’, completeness. To clarify this question, sup- 
pose we proceed for (3.30) as in the general case. After periodic boundary conditions 
are imposed we would arrive at ( 3 . 1 8 ~ )  and (3.18b), which express the energy- 
momentum eigenvalues in terms of arbitrary integers n = ( n ,  , . . . , n,, ) (now satisfying 
an  exclusion principle of order N,) ,  and the eigenvalues z ,  of the 2, operators 
(equations (3.16) and (3 .17 ) ) .  For fixed N , ,  the number z ,  has a lower bound and  
so does log z, ,  since the branch is fixed. The unboundedness from below of the 
relativistic Hamiltonian h is due to the integers n, which can be arbitrarily large. The 
standard BA procedure is to cut them off as in (3.24). It thus becomes possible to find 
the ground state, for fixed cutoff, and excited (physical) particle states. In this way, 
when the cutoff A on n is sent to E, one reconstructs the physical Fock space. 

Is this the right approach, in the sense that all physical states can be obtained in 
this way? For the MCCN, which has N,> 1, the answer is ‘no’ (i t  is ‘yes’ only for 
Nf= 1, i.e. for the standard CGN) .  There are basically two independent arguments to 
see this. First, in the ground state and excited states, colour and flavour are fully 
decoupled for any value of cutoffs A and L; hence colour and flavour are decoupled 
in the ‘physical’ Fock space. This is due to the peculiar form of the CBA states (4.4): 
they achieve complete antisymmetry in (xur), by multiplying a factor completely 
antisymmetric in (x r )* ,  [ Y r  exp(ikx)] \+,,-, and a factor completely symmetric in 
(XU), , X,e(x,)(S( Q)@).. However, this colour-flavour decoupling in the physical 
sector contradicts simple perturbation theory. In case one starts invoking non-perturba- 
tive effects, there is the second argument, which shows that this decoupling is not due  
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to the interaction but, rather, is a C B A  pathology. Consider the non-interacting case, 
g = 0 and, since in this case the ( + ) and ( - ) worlds d o  not see each other, let us focus 
our attention on, say, the ( + ) pseudoparticles. The CBA states (4.4) apply equally well 
to the g = 0 case, and lead to a bookkeeping of particle states very different from the 
conventional bookkeeping based on a Fermi sea filled by nN, negative energy particles 
per level. Recall that, by (3.12), SI, at V = 0 is 1 for a] # a,, but is P,, # 1 for a, = a / .  
The BA bookkeeping is based on the energy formula (equation ( 3 . 1 8 a ) ) :  

2 T  
L (4.5) 

where 2, turns out to be the cyclic operator on colour indices 

(z+@)a, a*,  = @ a 2  a , ,a ,  (4.6) 

as is evident from (3.16) and  S , / =  P,/. Since Z,"+= 1, E+ is properly quantised in 
multiples of 27r/L. The eigenvectors of Z ,  are very well known (see, for example, the 
review in [27] for a very clear and simple treatment), hence given a cutoff A such that 
2rn1 > AL, the ground state can be determined and all the degeneracies of excited 
levels can be calculated (the strength o f t h e  BA approach lies in the fact that one can 
d o  the same in the interacting case, with essentially no extra complications). In such 
computations, one must 'fold' the degeneracies of the first term in (4.5), which are 
proper to a Fermi system with Nf internal degrees of freedom, with those of the second 
term, which follow the rather complicated rules of the BA equations. In [27] the 
calculations are performed in the case Nf = 1 (and n = 21, and  complete agreement is 
found with the conventional bookkeeping. (This is one of the most important reasons 
why the answer for the one-flavour CGN is 'yes'; the BA construction is complete.) For 
this very reason, however, no agreement is possible in the N,> 1 case; i.e., the 
degeneracy of each energy level, 2 ~ n /  L, is much larger in the conventional bookkeeping 
than in that based on (4.5).  Indeed, the contribution of the colour part, (iN,/L)log Z,, 
is the same regardless of Nf and of the way the nI levels are filled; in other words, 
colour and  flavour are completely decoupled in contrast with conventional bookkeep- 
ing. The latter is really based on the group U (  nN,), whose irreducible representations 
(irreps) break into irreps of U ( N , )  x S U ( n )  which are no longer degenerate under the 
energy formula (4.5).  The fermion packing is much tighter in the standard approach, 
so that the density of states is larger. The BA treatment of free chiral fermions with 
separated colour and flavour (i.e. a U (  Nf) x SU( n )  bookkeeping) misses a large number 
of states; this happens although the C B A  states (4.4) are complete in each N ,  pseudopar- 
ticle sector at infinite '1, i.e. when the integers n, are unconstrained. When the interaction 
between left and right movers is turned on, the symmetry is indeed reduced from 
U ( n N , )  x U ( n N f )  down to U ( N f )  x U(Nf) x S U ( n ) ,  and part of the free-system 
degeneracies are lifted. Nevertheless, this cannot make complete at g > 0 a vector 
basis which was incomplete at g = 0. This is why the results of [28], where the CBA 

(4.4) is assumed, are necessarily wrong (besides being, by the way, in contradiction 
with general field-theoretic expectations). 

We mentioned beforehand that there exists another way to take flavour into account 
while preserving integrability. The analysis of the free chiral fermions performed above 
suggests that the two-body S matrices should not be trivial in flavour space. Rather, 
one should take CBA states (3.1 1) with 

@ = (aar) (4.7) 
sJ, = s;,'olourl@ s;;d\ourJ 
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where S ~ ~ ' o u r i ,  given by (4.2) and (4.3), acts only in colour space, while 

(4.8) 

Equations (3.33) and (3.34) imply that S,, is the total exchange operator 4, 
(4.9) 

when a, = a,. Now the free system can be properly described by the CBA; the energy 
formula (4.5) is modified into 

p,, = p;;oIouri p p a v o u r l  

(4.10) 

with the integers n, all distinct. The only subtlety is in the way Z ,  = Z(+co'our'Z~a'ouri 
is diagonalised: we can use an  SU(nN, )  bookkeeping, as well as an  S U ( n )  x SU( N, )  
one. The former corresponds, in the language of the QISM,  to the identification 

z,=T+(eo=o;{e,=o}) (4.11) 

where r+( Bo; {e,}) is the transfer matrix for right movers constructed according to (2.1) 
and (3.21) from the 'continuous' S matrices 

S,/(f?)=(iO+P,,)/ iB+l) (4.12) 

2T &$+ ", + i - N+ log ~ y o l o u r i ~ y a ~ o u r )  E + = y C  
/ = 1  

The S U ( n )  x S U ( N , )  bookkeeping corresponds instead to the choice 

(4.13a) 2, = r(colouri + (0; { o } ) @ T ~ f l a ' o u r ) ( o ~  (0)) 

(4.13b) 

and implies a colour-flavour factorisation: Qa+,,+ = @ a + $ r + .  The SU( nN,) bookkeeping 
leads to the correct degeneracies of the free system, i.e. the B A  U ( l ) x S U ( n N , )  
bookkeeping is equivalent to the standard U (  nN,) bookkeeping, as mentioned above. 
The SU( n )  x SU( N f )  approach, on the other hand, is equivalent to the U(  N,)  x SU( n )  
bookkeeping based on (4.5): in other words, it is wrong. 

While for the free system we can choose the right bookkeeping, for the interacting 
case the dangerous U (  Nf) x U (  N f )  x S U ( n )  bookkeeping is forced upon us by the 
symmetry reduction. It corresponds to the choice 

@@, = @av;y::i ( 4 . 1 4 ~ )  

( e o = * p ;  {e, = ( - i ) l + ~ ~ - ' } ) ~ ~ : f l a v o u r ) ( e O = o ,  {e, =o}) (4.14b) 

where 7(colour) (eo; {e,}) is constructed with S;Fo'ouri( 0 )  (equation (4.2); observe also 
that 6 is scaled by g' with respect to the general discussion of (3.19)-(3.22)) and 
is constructed with ( io  + P:pavourJ)(ie + 1 I - l .  Quite naturally, this faulty approach leads 
to BA equations with no coupling whatsoever among colour, flavour and  chiral labels 
n,. At present, it seems very hard to find a successful cutoff procedure, more sophisti- 
cated than the simple bound (3.24) on the q, while retaining the singular CBA form 
(3.11). It is very likely, after all, that the source of trouble is just in the unregularised 
nature of the first-quantised Hamiltonian h. 

To circumvent all these difficulties, it has been proposed [ 17, 25,261 that the MCGN 
model (as well as any other multiflavour model symmetric under a classical Lie group 

z, = T(colour) 
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in the fundamental representation) is actually equivalent to one-flavour CFM of the 
general type (3.1), with the interaction matrix V taken to be 

(4.15) 

(i.e. the standard relation (3.126) for a, = aI  = +), where S ,  is a two-body S matrix 
for the scattering of symmetric tensors of rank N f .  In other words, the idea is to 
replace the internal space of a multiflavour model, which is obviously reducible under 
the symmetry group G, by an irreducible internal space corresponding to the highest 
irrep contained in the original reducible space. The tensor S matrix in (4.15) is not 
quite arbitrary; it is obtained by ‘fusion’ [ 15,291 from the S matrix for ‘particles’ in 
the fundamental representation. As such, it is a regular solution of the YB equations 
(3.19). Let us briefly illustrate the fusion procedure for the case G = SU(n).  Consider 
the factorised scattering of N, SU( n )  vectors upon another N f  such vectors and assign 
to the pth vector, 1 ~p s N,, a complex-valued rapidity 6,. The total scattering matrix 
is a suitable product of matrices like (4.12), each evaluated at argument 6 = OP - 6, , 
if the corresponding two-body scattering involves the vectors p and p ’ .  The many 
different possible product structures are all equivalent, thanks to the YB algebra (3.19). 
For special values of the rapidities 6, (the so-called ‘string values’), the full S matrix 
is projected upon the channel in which two symmetric tensors of rank N f  scatter upon 
each other. This provides the desired two-body tensor S matrix of (4.15). It is 
the irreducibility under the symmetry group (SU( n )  in the case at hand) of the internal 
space of a CFM which ensures that the BA bookkeeping of excited states is correct. 

The physically intuitive argument supporting the above-mentioned substitution is 
the following (no explicit proof exists in the published literature). The factorisable 
interaction between SU( n) vectors in the MCGN is antiferromagnetic, being most 
attractive in the singlet channel. The ground state of the MCGN must contain an infinity 
of these vector-like pseudoparticles and, due to the extra flavour degeneracy, up to N f  
equal chirality pseudoparticles can be located at the same point in space with ‘parallel’ 
colours, i.e. in the symmetric tensor representation of rank N,. The singlet channel 
of the fused tensor S matrix is the most attractive, leading to the largest phase shift 
among all singlet channels of the scattering of N, vectors upon other N f  vectors. Hence 
the vector pseudoparticles in all the physical states near the true vacuum will tend to 
form bound states which are symmetric tensors of rank N,. Within the standard cutoff 
procedure (3.24), the CBA states (4.4) or the equivalent ones constructed according to 
(4.14) (with decoupled colour and flavour) certainly do  not allow such a bound-state 
formation, since the pseudoparticle rapidities are ‘frozen’ to the discrete values a, = *. 
On the other hand, the model with the tensor interaction (4.15) describes only that 
sector of the MCGN where the bound-state formation is maximum; from this point of 
view, it can hardly be ‘equivalent’ to the full MCGN in the field-theoretic sense (see 
also [30] on this point). Nevertheless, the coloured, massive and chiralless sectors of 
the two theories are probably equivalentt, at least in the N f + m  limit relevant for the 
connection to the PC (+ model pointed out in the pioneering works [25] and extensively 
used in [26] also for Lie groups other than SU(n).  Therefore, given that the SU(n) 

t A similar situation is encountered in the BA solution of the multichannel Kondo model [31]:  there a 
suitable regularisation is found that yields a complete tensor bound-state formation, leading to the correct 
and full description of the electron-impurity magnetic interaction; the electron gas itself, on the other hand, 
including its charge degrees of freedom, is only partially accounted for. 



Chiral fermion and sigma models on the light-cone lattice 1351 

PC U model is obtained from the Nf+ CO limit of the MCGN model; that the massive 
sector of the latter can be constructed by solving the subsidiary irreducible tensor CF 

model; and  that the PC U model exhibits dynamical mass generation just like the MCGN 
but without any massless sector, one could claim, as in [26], to have solved the PC U 

model via CBA. 

We close this rather lengthy section with a careful investigation of the link between 
the MCGN model and the PC U model. We shall show that the N f + w  limit of the 
MCGN does not reproduce the entire Hilbert space of the PC U model, but only a 
subspace of it. Details of this derivation can be found in [14]. 

Consider the action functionals of the SU(n) PC U model, 

sd =- d2x Tr(d,U)(apU-') U E S U ( n )  (4.16) 
g ' I  

and that of the MCGN model, 

dNi= d2x( i+d4-~gJ ,"Jp")  (4.17) I 
where 

Nr 

J," = c &Y,T"*, Tr T"TP = + S a p .  
j = l  

Using a functional integral argument, Polyakov and Wiegmann claimed [25] that 
d, = d (in the sense, of course, that expectation values calculated with dNr tend to 
those calculated with s4 as Nf+m) .  Now consider the partition function Z, , (p )  at 
inverse temperature p for model (4.17). It can be written 

(4.18) 

where D, =a ,  - iA,, A, = A; T" and the spacetime signature is Euclidean. The 
boundary conditions in the Euclidean time x2 are periodic for A, and  antiperiodic for 
CL and &, as is appropriate for finite-temperature QFT. 

Integration over A, gives back the action (4.17). Integration over 4 and (L gives 
the effective action (in gauge-invariant regularisations) 

T[A] = - d2x  Tr A,A, - NfT,,,[ MM'] 
g 'I (4.19) 

where M is a SL(n ,  @)-valued field related to A, by 

A = A, -iAz = iM-'dM a = a,  - ia, (4.20) 

and Twzw[R], for any invertible R ,  is the (Euclidean) wzw functional [ 18,231. The 
argument now is that for Nf + CO, only 'pure gauge' fields A, = i W ' a ,  U, corresponding 
to M = U E SU( n), will contribute to the residual functional integration over A,, since 
they make TwZw[MMi] vanish. All other configurations give a strictly negative 
Euclidean rwzw and will be suppressed in the N p c o  limit. The first term in (4.19), 
quadratic in A,, then gives precisely the PC U model action (4.16). 

The missing point in [25] is that the change of variables from A to U allows for 
a twisted boundary condition ( B C )  on U. To see this properly it is convenient to change 
variables from A to M E SL(n ,  C) at fixed N f .  Then the periodic BC on A 

(4.21) A ( x , ,  P )  = A ( x , ,  0 )  
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allows for a twisted BC on M 

(4.22) 

where L, is an arbitrary constant matrix of SL(n, e) .  Moreover, it is necessary to 
integrate over all possible twists L, in order to reproduce in full the A integration. 
Also the Jacobian of this change of variables should be properly taken into account 
[ 141. The net result is that, when NF+ 00 and M + U E SU( n), also L,  + Up E SU( n )  
and one is left with 

r r 
(4.23) 

where & [ U ]  is given by (4.16) and the subscript (U,) indicates that U satisfies the 
twisted BC U ( x , ,  P )  = U , U ( x , ,  0). We now recognise in (4.23) not just the partition 
function of the PC U model, but rather the trace [14] 

(4.24) 

where H is the Hamiltonian of the PC U model and Po is the projector onto singlet 
states of SU(n),. It is clear that an analogous expression can be obtained with the 
projector onto the SU(n), singlet, by just setting A = i(3M)M-l rather than A = 
iM-'aM as in (4.20). What one cannot obtain are the physical states which transform 
non-trivially under both SU(n), and SU( n ) R .  

Our result (4.24) explains why the careful counting of BA states in [13] did not 
reproduce all the states of the SU(2) PC U model, but only the singlets under either 
su(2)R or SU(2),. In [13], the setting is essentially that of a light-cone vertex model; 
the R matrix is the S + CO limit of the R matrix (2.36) for symmetric tensors of rank 
2 s  under SU(2) (i.e. states of spin S). We have seen in 9 3 that such a vertex model 
is equivalent, in the scaling limit, to the massive sector of a CFM with spin-S internal 
space. In turn, this should be equivalent to the massive sector of the multiflavour 
SU(2) CGN with N f =  2s.  But as Nf+ CO this fails to reproduce the entire Hilbert space, 
giving only the SU(2)L singlets. 

In the SU(2) case it is possible to reconstruct the entire spectrum and S matrix 
from the knowledge of their restriction to the SU(2), singlets. For a generic classical 
group G, or even exceptional Lie groups, this remains to be fully established. The 
situation appears even less convincing if Green functions are to be considered. The 
construction of an explicit, regularised version of the full PC U model, with a regularised 
Hamiltonian still exactly diagonalisable, remains an open challenge. 
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